Sains Malaysiana 53(3)(2024): 549-559
http://doi.org/10.17576/jsm-2024-5303-06
Evaluation of Lentiviral Based Gene Delivery System in Adherent and Suspension in vitro Cell
Models
(Penilaian Sistem Angkut Serang Gen Berasaskan Lentivirus dalam Model Sel Adheren dan Ampaian secara in vitro)
IZYAN MOHD IDRIS1,2, FAZLINA NORDIN1,*, NUR JANNAIM MUHAMAD2, SITI ZULEHA
IDRIS3, GEE JUN TYE4, WAN SAFWANI WAN KAMARUL ZAMAN5 & MIN HWEI NG1
1Centre
for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Cheras, Kuala Lumpur, Malaysia
2Institute
for Medical Research (IMR), National Institutes of Health (NIH), Ministry of
Health Malaysia, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, 40170 Shah Alam, Selangor, Malaysia
3Immunology
Unit, Pathology Department, Faculty of Medicine and Health Sciences, University
Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
4Institute
for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 USM Penang, Pulau Pinang, Malaysia
5Department
of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
Received: 6
April 2023/Accepted: 9
February 2024
Abstract
Lentiviruses
are a highly robust gene delivery system capable of in vitro and in
vivo gene transfer into multiple cell types. Recent fourth-generation lentiviral systems have been designed for enhanced safety,
however, the increased recombination events required to produce infective lentiviral particles may reduce production efficiency. A
set protocol for all types of target cells is not recommended and optimization
of conditions for gene transfer into different target cells is required. In
this study, we aim to evaluate the efficiency and reproducibility of lentiviral production using a fourth-generation lentiviral packaging system and identify optimal parameters
for successful transduction in two different cell models, adherent and
suspension cells. Lentiviral production, effect of
viral volume, sustained gene expression and transduction adjuvants on adherent
and suspension gene- cell models were evaluated. Transfection and transduction
efficiency of lentiviruses was evaluated by fluorescence microscopy and flow
cytometry. This study demonstrates that production of green fluorescent protein
(GFP)- lentiviruses using the fourth-generation lentiviral packaging is consistent and reproducible. Optimal transduction of adherent cell
types is achieved at lower multiplicity of infection (MOI) compared to
suspension cells and produces GFP-expressing cells with higher intensity.
Expression of GFP is sustained in all cell types over multiple passages. Polycation DEAE-dextran was determined to improve
transduction in suspension cells, however, provides similar transduction
efficiency as polybrene in adherent cells. In
conclusion, fourth generation lentiviral system
reproducibly generates high titre lentiviruses capable of infecting multiple
cell types, however transduction protocols for different cell types require
further optimization.
Keywords: Gene transfer; in vitro model; lentivirus
Abstrak
Lentivirus merupakan kaedah pemindahan gen yang sangat teguh yang mampu memindahkan gen secara in
vitro dan in vivo kepada pelbagai jenis sel. Sistem lentivirus generasi keempat yang terbaharu, direka untuk mempertingkatkan keselamatan, walau bagaimanapun, bilangan keadaan rekombinasi yang diperlukan bagi menghasilkan zarah lentivirus berjangkit boleh mengurangkan kecekapan pengeluaran. Protokol yang ditetapkan untuk semua jenis sel tidak digalakkan dan pengoptimuman keadaan bagi pemindahan gen ke dalam sel sasaran yang berbeza diperlukan. Dalam penyelidikan ini, kami berhasrat untuk menilai kecekapan dan kebolehulangan pengeluaran lentivirus menggunakan sistem lentiviral generasi keempat dan mengenal pasti parameter optimum bagi transduksi yang berjaya dalam dua model sel yang berbeza iaitu sel adheren dan sel ampaian. Penghasilan lentivirus, kesan isi padu virus, pengekspresan gen
yang berterusan dan adjuvan transduksi pada model sel adheren atau ampaian telah dinilai. Kecekapan pemindahan dan transduksi lentivirus dinilai oleh mikroskop pendarfluor dan sitometri aliran. Kajian ini menunjukkan bahawa pengeluaran lentivirus ‘green fluorescent protein’ (GFP) menggunakan pembungkusan lentiviral generasi keempat adalah tekal dan boleh dihasilkan semula. Transduksi optimum jenis sel adheren dicapai pada kegandaan jangkitan (MOI) yang lebih rendah berbanding sel ampaian dan menghasilkan sel yang mengekspresi GFP dengan keamatan yang tinggi. Ekspresi GFP dikekalkan dalam semua jenis sel yang melalui pemindahan. Polycation DEAE-dextran didapati telah meningkatkan transduksi dalam sel ampaian, walau bagaimanapun, ia menghasilkan kecekapan yang sama seperti polibren dalam sel adheren. Kesimpulannya, sistem lentivirus generasi keempat mempunyai kebolehulangan dalam menghasilkan titer lentivirus tinggi yang mampu menjangkiti pelbagai jenis sel, namun protokol bagi transduki bagi jenis sel berbeza memerlukan pengoptimuman selanjutnya.
Kata kunci: in vitro; lentivirus; pemindahan gen
REFERENCES
Ailles,
L.E. & Naldini, L. 2002. HIV-1-derived lentiviral vectors. Current Topics in Microbiology and
Immunology 261: 31-52.
Balak,
J.R.A., de Graaf, N., Zaldumbide,
A., Rabelink, T.J., Hoeben,
R.C., de Koning, E.J.P. & Carlotti,
F. 2019. Highly efficient ex vivo lentiviral transduction of primary human pancreatic exocrine cells. Scientific Reports 9: 15870.
Cronin, J., Zhang, X-Y. & Reiser,
J. 2005. Altering the tropism of lentiviral vectors
through pseudotyping. Current Gene Therapy 5(4): 387-398.
Denning, W., Das, S., Guo,
S., Xu, J., Kappes, J.C. & Hel, Z. 2013.
Optimization of the transductional efficiency of lentiviral vectors: Effect of sera and polycations. Molecular Biotechnology 53(3): 308-314.
Le Doux, J.M., Landazuri, N., Yarmush, M.L.
& Morgan, J.R. 2001. Complexation of retrovirus with cationic and anionic
polymers increases the efficiency of gene transfer. Human Gene Therapy 12(13): 1611-1621.
Dull, T., Zufferey, R.,
Kelly, M., Mandel, R.J., Nguyen, M., Trono, D. & Naldini, L. 1998. A third-generation lentivirus vector with
a conditional packaging system. Journal of Virology 72(11): 8463-8471.
Elegheert,
J., Behiels, E., Bishop, B., Scott, S., Woolley,
R.E., Griffiths, S.C., Byrne, E.F.X., Chang, V.T., Stuart, D.I., Jones, E.Y., Siebold, C. & Aricescu, A.R.
2018. Lentiviral transduction of mammalian cells for
fast, scalable and high-level production of soluble and membrane proteins. Nature
Protocols 13(12): 2991-3017.
Ferreira, M.V., Cabral, E.T. & Coroadinha,
A.S. 2021. Progress and perspectives in the development of lentiviral vector producer cells. Biotechnology Journal 16(1): e2000017.
Gándara,
C., Affleck, V. & Stoll, E.A. 2018. Manufacture of third-generation
lentivirus for preclinical use, with process development considerations for
translation to good manufacturing practice. Human Gene Therapy Methods 29(1): 1-15.
Gurumoorthy,
N., Nordin, F., Tye, G.J.,
Wan Kamarul Zaman, W.S. & Ng, M.H. 2022.
Non-integrating lentiviral vectors in clinical
applications: A glance through. Biomedicines 10(1): 107.
Jang, Y., Kim, Y.S., Wielgosz, M.M., Ferrara, F., Ma,
Z., Condori, J., Palmer, L.E., Zhao, X., Kang, G.,
Rawlings, D.J., Zhou, S. & Ryu, B.Y. 2020.
Optimizing lentiviral vector transduction of
hematopoietic stem cells for gene therapy. Gene Therapy 27(12): 545-556.
Jensen, T.W., Chen, Y. & Miller, W.M. 2003. Small
increases in pH enhance retroviral vector transduction efficiency of NIH-3T3
cells. Biotechnology Progress 19(1): 216-223.
Kalidasan,
V., Ng, W.H., Ishola, O.A., Ravichantar,
N., Tan, J.J. & Das, K.T. 2021. A guide in lentiviral vector production for hard-to-transfect cells, using cardiac-derived c-kit
expressing cells as a model system. Scientific Reports 11(1): 19265.
Kappes,
J.C., Wu, X. & Wakefield, J.K. 2003. Production of trans-lentiviral vector with predictable safety. Methods in
Molecular Medicine 76: 449-465.
Kumar, P. & Woon-Khiong,
C. 2011. Optimization of lentiviral vectors
generation for biomedical and clinical research purposes: Contemporary trends
in technology development and applications. Current Gene Therapy 11(2):
144-153.
Li, Z., Yu, Y., Kang, J., Zheng, Y., Xu, J., Xu, K., Hou, K., Hou, Y. & Chi, G.
2020. MicroRNA-124 overexpression in Schwann cells promotes Schwann
cell-astrocyte integration and inhibits glial scar formation ability. Frontiers
in Cellular Neuroscience 14: 144.
Lin, P., Lin, Y., Lennon, D.P., Correa, D., Schluchter, M. & Caplan, A.I. 2012. Efficient lentiviral transduction of human mesenchymal stem cells
that preserves proliferation and differentiation capabilities. STEM CELLS
Translational Medicine 1(12): 886-897.
Lizée,
G., Gonzales, M.I. & Topalian, S.L. 2004.
Lentivirus vector-mediated expression of tumor-associated
epitopes by human antigen presenting cells. Human Gene Therapy 15(4):
393-404.
Merten,
O.W., Hebben, M. & Bovolenta,
C. 2016. Production of lentiviral vectors. Molecular
therapy. Methods & Clinical Development 3: 16017.
Milone,
M.C. & O’Doherty, U. 2018. Clinical use of lentiviral vectors. Leukemia 32: 1529-1541.
O’Doherty,
U., Swiggard, W.J. & Malim,
M.H. 2000. Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. Journal of Virology 74(21):
10074-10080.
Pirona,
A.C., Oktriani, R., Boettcher, M. & Hoheisel, J.D. 2021. Process for an efficient lentiviral cell transduction. Biology Methods and
Protocols 5(1): 1-8.
Quinonez,
R. & Sutton, R.E. 2002. Lentiviral vectors for
gene delivery into cells. DNA and Cell Biology 21(12): 937-951.
Swaney,
W.P., Sorgi, F.L., Bahnson,
A.B. & Barranger, J.A. 1997. The effect of
cationic liposome pretreatment and centrifugation on
retrovirus-mediated gene transfer. Gene Therapy 4(12): 1379-1386.
Wang, T., Larcher, L.M., Ma,
L. & Veedu, R.N. 2018. Systematic screening of
commonly used commercial transfection reagents towards efficient transfection
of single-stranded oligonucleotides. Molecules 23(10): 2564.
Wu, X., Wakefield, J.K., Liu, H., Xiao, H., Kralovics, R., Prchal, J.T. & Kappes,
J.C. 2000. Development of a novel trans-lentiviral vector that affords predictable safety. Molecular Therapy 2(1): 47-55.
Yew, N.S., Przybylska, M.,
Ziegler, R.J., Liu, D. & Cheng, S.H. 2001. High and sustained transgene
expression in vivo from plasmid vectors containing a hybrid ubiquitin
promoter. Molecular Therapy 4(1): 75-82.
*Corresponding
author; email: nordinf@ppukm.ukm.edu.my
|